innovativesetr.blogg.se

Tf data generator
Tf data generator





tf data generator

Test_dataset = test_dataset.batch(BATCH_SIZE)īuild and train a model model = tf.keras.Sequential([ Train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE) Use the datasets Shuffle and batch the datasets BATCH_SIZE = 64 Test_dataset = tf._tensor_slices((test_examples, test_labels)) train_dataset = tf._tensor_slices((train_examples, train_labels)) Path = tf._file('mnist.npz', DATA_URL)Īssuming you have an array of examples and a corresponding array of labels, pass the two arrays as a tuple into tf._tensor_slices to create a tf.data.Dataset.

tf data generator

However, the source of the NumPy arrays is not important. This example loads the MNIST dataset from a. This tutorial provides an example of loading data from NumPy arrays into a tf.data.Dataset.







Tf data generator